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• It is based on Kaiser’s core principles:

➢Ruthless Simplification

➢Ruthless Standardization

➢Ruthless Separation (into tiny, elemental steps)
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• Wherever we can, we’re letting software automate the production of 
converters…

➢By building data models
➢By writing code (modules)
➢By testing the output

• What you will see here is not necessarily the final form of the Rapid 
Converter Framework that we might implement, but it is intended to 
show what’s possible and where we’re going...
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As soon as you can read the vendor file, we can “feed” the 
the Data Model Creator to automatically build (i.e. write code for) 
a minimalistic, first-version “Consensus Data Model” for us.

Fully-automatic 
process – no human 

intervention
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We have decided to standardize on CSV as a “messaging” format 
between the components of the Rapid Converter Framework.  
This is not necessarily a final design decision:   JSON also possible...
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One side benefit to this particular step is that you get to stress-test
your File Parser against the diversity of vendor file format variations  
that you might reasonably expect to encounter in the wild.
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Once you have your Consensus Data Model, you can start 
producing your first files immediately.  The Consensus 
Data Model Creator writes the code the CSV Creator needs to 
implement the data model right away.   Just compile and go. 
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• Of course, the “Consensus Data Model” is the bare minimum we need 
to create standard-format files.    But using the “Consensus Data 
Model” approach allows us to decouple the much slower “Final Data 
Model” development from converter creation.

• This allows our Companies to get much-needed near-term ROI by 
getting real data into standard-format files quickly so our scientists can 
poke it, prod it, and get used working with to it. 
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The CSV creator allows us to immediately populate the 
data cubes– at no extra cost or effort! 
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The Pfizer tool also allows us to directly put 
whatever we want into the data package…
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Typical operational scenario for the Rapid Converter 
Framework in production…  (w/ Consensus Data Model)

Elapsed time from the very beginning   < 1 day
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blocks - the compartments of the files are populated asynchronously 
and discontinuously as needed. 
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cube structure/content) – with little or no coding.   

• Once the file parser is in hand, the turnaround to being able to 
produce the first complete (DD + DC + DP) xxx for a new type of 
vendor file is typically on the order of a day or two.

• We employ extensive instance data checking at several places in the 
process in order to minimize the amount of post-hoc validation 
required.
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Next Steps

• The elements of the Rapid Converter Framework are currently stand-
alone console applications.  

• We are currently optimizing the inter-module communication. 

• The thought is to ultimately redeploy this network as a collection of 
pluggable REST microservices to support massive, rapid converter 
development & deployment across the enterprise.






