
Rapid Converter Framework
An approach to ultra-fast converter development

Paul-James Jones, Justin Van Duine & Bo Du
Fall, 2020

Our Inspiration: Henry J. Kaiser

The Current State (problem)

The Current State (problem)

• Converter building is currently a craft process, requiring arcane knowledge
and skill.

• It is slow, precisely because it is a
craft process, and require arcane
knowledge

• In order to move beyond the hobbyists’ workshop model we need to be
inspired by Kaiser’s example.

The Current State (problem)

• Converter building is currently a craft process, requiring arcane knowledge
and skill.

• It is slow, precisely because it is a
craft process, and requires arcane
knowledge

• In order to move beyond the hobbyists’ workshop model we need to be
inspired by Kaiser’s example.

The Current State (problem)

• Converter building is currently a craft process, requiring arcane knowledge
and skill.

• It is slow, precisely because it is a
craft process, and requires arcane
knowledge

• In order to move beyond the hobbyists’ workshop model we need to be
inspired by Kaiser’s example.

The Objective

• Building on our collaborative experience in developing converters, we
are laying the groundwork for a “Rapid Converter Framework” that will
potentially let us build brand new converters in days, not weeks or
months.

The Objective

• Building on our collaborative experience in developing converters, we
are laying the groundwork for a “Rapid Converter Framework” that will
potentially let us build brand new converters in days, not weeks or
months.

• It is based on Kaiser’s core principles:

➢Ruthless Simplification

➢Ruthless Standardization

➢Ruthless Separation (into tiny, elemental steps)

The Objective

• Wherever we can, we’re letting software automate the production of
converters…

➢By building data models
➢By writing code (modules)
➢By testing the output

➢What you will see here is not necessarily the final form of the -BI &
Pfizer will implement, but it is intended to show what’s possible and
where we’re going...

The Objective

• Wherever we can, we’re letting software automate the production of
converters…

➢By building data models
➢By writing code (modules)
➢By testing the output

➢What you will see here is not necessarily the final form of the will
implement, but it is intended to show what’s possible and where
we’re going...

The Objective

• Wherever we can, we’re letting software automate the production of
converters…

➢By building data models
➢By writing code (modules)
➢By testing the output

• What you will see here is not necessarily the final form of the Rapid
Converter Framework that we might implement, but it is intended to
show what’s possible and where we’re going...

In the beginning…

Vendor
File Parser

In the beginning…

Vendor
File Parser

If you can’t read the
vendor file, there is no
realistic chance to ever

build a converter

In the beginning…

Consensus
Data Model

Creator

Vendor
File Parser

As soon as you can read the vendor file, we can “feed” the
the Data Model Creator to automatically build (i.e. write code for)
a minimalistic, first-version “Consensus Data Model” for us.

Consensus
Data Model

Creator

Vendor
File Parser

As soon as you can read the vendor file, we can “feed” the
the Data Model Creator to automatically build (i.e. write code for)
a minimalistic, first-version “Consensus Data Model” for us.

Fully-automatic
process – no human

intervention

Consensus
Data Model

Creator

CSV Creator

Vendor
File Parser

We have decided to standardize on CSV as a “messaging” format
between the components of the Rapid Converter Framework.
This is not necessarily a final design decision: JSON also possible...

Consensus
Data Model

Creator

CSV Creator

Vendor
File Parser

One side benefit to this particular step is that you get to stress-test
your File Parser against the diversity of vendor file format variations
that you might reasonably expect to encounter in the wild.

CSV Creator

CSV to TTL
format

conversion

TTL file

Vendor
File Parser

(m
et

ad
at

a)

Data Cube

Data Description

Data Package

Aggregator (Pfizer)
Data Model

Integrity Checks

Once you have your Consensus Data Model, you can start
producing your first files immediately. The Consensus
Data Model Creator writes the code the CSV Creator needs to
implement the data model right away. Just compile and go.

The com

Standard-
format files

The process

• Of course, the “Consensus Data Model” is the bare minimum we need
to create standard-format files. But using the “Consensus Data
Model” approach allows us to decouple the much slower “Final Data
Model” development from converter creation.

The process

• Of course, the “Consensus Data Model” is the bare minimum we need
to create standard-format files. But using the “Consensus Data
Model” approach allows us to decouple the much slower “Final Data
Model” development from converter creation.

• This allows our Companies to get much-needed near-term ROI by
getting real data into standard-format files quickly so our scientists can
poke it, prod it, and get used working with to it.

Final
Data Model

Creator

Consensus
Data Model

Creator

CSV Creator

CSV to TTL
format

conversion

TTL file

Vendor
File Parser

(m
et

ad
at

a) Data Model
Integrity Checks

community

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

Final
Data Model

Creator

Consensus
Data Model

Creator

CSV Creator

CSV to TTL
format

conversion

TTL file

Vendor
File Parser

(m
et

ad
at

a) Data Model
Integrity Checks

Nice to have,
but not strictly

required

community

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

CSV Creator

Vendor
File Parser

The CSV creator allows us to immediately populate the
data cubes– at no extra cost or effort!

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

Vendor Proprietary file

Vendor
File Parser

The Pfizer tool also allows us to directly put
whatever we want into the data package…

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

CSV Creator

CSV to TTL
format

conversion

TTL file

Vendor Proprietary file

Vendor
File Parser

(m
et

ad
at

a) Data Model
Integrity Checks

Typical operational scenario for the Rapid Converter
Framework in production… (w/ Consensus Data Model)

Elapsed time from the very beginning < 1 day

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

Using flat files as a transfer medium lets us easily intercept / modify the
interprocess communication so that we can easily prototype new ideas that
are not directly or immediately supported by the codebase.

(for example, novel hybrid full-graph/leaf node data models…)

This is also very useful where your don’t know the best way, a priori, to
populate an DF… You have the ability to “experiment” easily….

(for example: peaks in Data Description vs. peaks in Data Cubes…)

Or

(for example: metadata as JSON vs. TTL in the Data Package…)

Using flat files as a transfer medium lets us easily intercept / modify the
interprocess communication so that we can easily prototype new ideas that
are not directly or immediately supported by the codebase.

(for example, novel hybrid full-graph/leaf node data models…)

This is also very useful where your don’t know the best way, a priori, to
populate files… You have the ability to “experiment” easily….

(for example: peaks in Data Description vs. peaks in Data Cubes…)

Or

(for example: metadata as JSON vs. TTL in the Data Package…)

Using flat files as a transfer medium lets us easily intercept / modify the
interprocess communication so that we can easily prototype new ideas that
are not directly or immediately supported by the codebase.

(for example, novel hybrid full-graph/leaf node data models…)

This is also very useful where your don’t know the best way, a priori, to
populate files… You have the ability to “experiment” easily….

(for example: peaks in Data Description vs. peaks in Data Cubes…)

or

(for example: metadata as JSON vs. TTL in the Data Package…)

CSV Creator

TTL file

Vendor Proprietary file

Vendor
File Parser

(metadata)

Example: Incorporating manually-produced
leaf-node, full-graph or hybrid data models

Standard-
format files

Data Cube

Data Description

Data Package

Aggregator (Pfizer)

Current Status

• This modular approach lets us mix & match components – like Lego®
blocks - the compartments of the files are populated asynchronously
and discontinuously as needed.

• We can rapidly prototype many different andquickly (example: data
cube structure/content) – with little or no coding.

• Once the file parser is in hand, the turnaround to being able to
produce the first complete (DD + DC + DP) xxx for a new type of
vendor file is typically on the order of a day or two.

• We employ extensive instance data checking at several places in the
process in order to minimize the amount of post-hoc validation
required.

Current Status

• This modular approach lets us mix & match components – like Lego®
blocks - the compartments of the files are populated asynchronously
and discontinuously as needed.

• We can rapidly prototype many different file configurations quickly
(example: data cube structure/content) – with little or no coding.

• Once the file parser is in hand, the turnaround to being able to
produce the first complete (DD + DC + DP) type of vendor file is
typically on the order of a day or two.

• We employ extensive instance data checking at several places in the
process in order to minimize the amount of post-hoc validation
required.

Current Status

• This modular approach lets us mix & match components – like Lego®
blocks - the compartments of the files are populated asynchronously
and discontinuously as needed.

• We can rapidly prototype many different file configurations quickly
(example: data cube structure/content) – with little or no coding.

• Once the file parser is in hand, the turnaround to being able to
produce the first complete (DD + DC + DP) files for a new type of
vendor file is typically on the order of a day or two.

• We employ extensive instance data checking at several places in the
process in order to minimize the amount of post-hoc validation
required.

Current Status

• This modular approach lets us mix & match components – like Lego®
blocks - the compartments of the files are populated asynchronously
and discontinuously as needed.

• We can rapidly prototype many different file configurations quickly
(example: data cube structure/content) – with little or no coding.

• Once the file parser is in hand, the turnaround to being able to
produce the first complete (DD + DC + DP) files for a new type of
vendor file is typically on the order of a day or two.

• We employ extensive instance data checking at several places in the
process in order to minimize the amount of post-hoc validation
required.

Next Steps

• The elements of the Rapid Converter Framework are currently stand-
alone console applications.

• We are currently optimizing the inter-module communication

• We plan to redeploy this network as a collection of pluggable REST
microservices available globally within our Company to support rapid
converter development & deployment.

Next Steps

• The elements of the Rapid Converter Framework are currently stand-
alone console applications.

• We are currently optimizing the inter-module communication.

• We plan to redeploy this network as a collection of pluggable REST
microservices available globally within our Company to support rapid
converter development & deployment.

Next Steps

• The elements of the Rapid Converter Framework are currently stand-
alone console applications.

• We are currently optimizing the inter-module communication.

• The thought is to ultimately redeploy this network as a collection of
pluggable REST microservices to support massive, rapid converter
development & deployment across the enterprise.

