

BIOVIA LABORATORY

April 2023

A NEW WAY TO IMPLEMENT

Customer begins to realize value almost immediately and can pause or stop at any time and still have a successful project.

Digital Compliance

Digital Workflows

INCREASED AUTOMATION

Automated data acquisition

FULL TRANSFORMATION

- Method and Procedure Lifecycle management
- Minimized compliance risks
- Automated generation of Structured Documents

Digital Processes

FLEXIBLE PROCEDURE EXECUTION

- Real-time structured procedure authoring
- Inventory lot management
- Equipment integration

- Review by exception
- Specifications

Metrologu

STANDARD CONTENT AND WORKFLOWS

Digital Results

- Master Data
- ONTOLOGIES
- Configured Workflows
- Single point analytics

Customer Time to Value

Go-live

Enhance

Enhance

MAJORITY OF VALUE BY MARKET

Where most customers would likely realize the larger value for investment with digitization

THE NEED FOR COMMON REFERENCE DATA

Instrument 1

Instrument 2

ORIGINAL EQUIPMENT REFERENCE DATA MODEL

RE-THINKING EQUIPMENT ONTOLOGY

Provide an ontological approach to instrument data based on instrument class

- Improve consistency and re-use of reading definitions
- More closely align with industry initiatives such as Allotrope Foundation Ontologies (AFO)
- Align internal ontologies

Simplify the construction and maintenance of reference and master data

• Improve the quality and robustness of implementations

Stronger relationship between equipment measurements and process parameters

Enable delivery of packaged equipment reference data

THE NEW WAY FORWARD: CLASS READING MODEL

EQUIPMENT CLASS

CLASS READING

PARAMETER TEMPLATE

EQUIPMENT CLASS

Base equipment categories with specific lab purposes to produce a set of measurements

Examples: balance, pH meter, BGA, SEC, bioreactor, extruder

Medium set, strongly governed

READING ONTOLOGY

New contextual use of a Parameter Template applied to an Equipment Class

Examples: initial temperature, final temperature, inlet temperature, reactor temperature

Large set, dynamically expandable, governed with Equipment Class

MEASUREMENT ONTOLOGY

CORE MEASURABLE ATTRIBUTES

Examples: temperature, mass, density, pH, peak area, stirspeed

Small set, very strongly governed

PARAMETER TEMPLATE

Common group of measurements for convenience/correlation

Examples: temperature, amount, mass density, pH

Large set, very strongly governed

CLASS READING EXAMPLE: TEMPERATURE

CLASS READING MODEL SUMMARY

CLASS READING MODEL DIFFERENCES

- Better alignment with industry standard ontology approaches based on equipment class
- Directly tied to parameter templates to improve data association with procedure execution
- Creates measurements via "Processors" instead of "Parsers"

PATH FORWARD

- "Side by side" use with current equipment model
 - Existing configuration continues to operate as it does today
- Add class readings to existing configuration
 - Harmonize reference data across equipment types
- Current instruments can be switched to the new model when ready
 - Can be switched back if necessary providing a robust adoption path

WHAT SUCCESS LOOKS LIKE

