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Our vision with LLMs

Proprietary

ASM

Dev+

Converter

SME*

LLM create LLM+

1-2 days 
per format 

And repeat 
1000x!

… 1000s of formats

Instrument 

Formats 

We used LLMs to build 
converters for 19 instruments

Open-source test set from Benching

Findings: 

- 1-2 day turnaround end-to-end 

- * SME involvement minimized 
Only needed for validation, which is 
accelerated through LLM-specific tooling 
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Our findings: what is an LLM good at?

Raw instrument data An LLM extraction result (collapsed for readability)

Domain knowledge

Unlike an engineer, doesn’t need back-and-forth with SMEs for domain knowledge
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Many caveats — just for illustration



Our findings: what is an LLM bad at?

Expensive to run at high volumes

Moderately-sized raw data file (~50k tokens) ~$5 per day

If you’re a lab with 10k instruments 10s of millions annually ($)

💡 All three LLM negatives (consistency, 
explainability, cost) can be solved through code
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- LLM-based workflow 
enables 1-2 day turnaround

Mostly autonomous 
code synthesis

Test set generation 
at scale

Minimization of 
SME grunt work
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LLM writes code

Code is tested on test set

Logs inform code 
revision

Why is this better and faster?

- LLM-based workflow 
enables 1-2 day turnaround

- LLMs can generate 100x the 
tests vs software engineers

- Take advantage of existing 
data for highly comprehensive 
testing

- LLM domain knowledge 
eliminates SME and engineer 
back-and-forth 

Another benefit of the domain knowledge…

Raw instrument data

Successful extraction of field not in ASM schema

Opportunity to identify additions 
to Allotrope standards!
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LLM for code synthesis

LLM writes code

Code is tested on test set

Logs inform code 
revision

Why is this better and faster?

- LLM-based workflow 
enables 1-2 day turnaround

- LLMs can generate 100x the 
tests vs software engineers

- Take advantage of existing 
data for highly comprehensive 
testing

- LLM domain knowledge 
eliminates SME and engineer 
back-and-forth 

- Tooling built around LLM 
attention greatly speeds up 
manual SME validation work
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Scalable human validation/introspection via attention tracing

Raw instrument data

Highlighting LLM interpretation  
in our attention tracing tool

Correctly interprets < TEST RNG value as below measurement range 

Directs attention to the correct < TEST RNG value only

Snapshots from our attention tracing tool



We can build converters fast
What else can we do with LLMs to further FAIR data and Allotrope adoption?



We can build converters fast
What else can we do with LLMs to further FAIR data and Allotrope adoption?

High-Effort but TransformativeLow-Hanging Fruit



We can build converters fast
What else can we do with LLMs to further FAIR data and Allotrope adoption?

High-Effort but TransformativeLow-Hanging Fruit

Identify extensions to 
Allotrope standards



We can build converters fast
What else can we do with LLMs to further FAIR data and Allotrope adoption?

High-Effort but TransformativeLow-Hanging Fruit

Identify extensions to 
Allotrope standards

Automate drafting of 
Allotrope models



We can build converters fast
What else can we do with LLMs to further FAIR data and Allotrope adoption?

High-Effort but TransformativeLow-Hanging Fruit

Identify extensions to 
Allotrope standards

Extract and structure experiments, 
methods, and materials

Automate drafting of 
Allotrope models



Thank you!

Questions? Feedback? Comments?

a@awchen.com

mailto:a@awchen.com

