

Automatic Asset Onboarding

USING CHATGPT FOR AUTOMATIC ASSET ONBOARDING FOR INDUSTRIAL IOT PROJECTS

Erich Barnstedt
Marketing Control Board, OPC Foundation &
Chief Architect Standards, Consortia & Industrial IoT
Azure Edge & Platform Team, Microsoft Corporation

The Biggest Challenge: Vendor Lock-In

...happens when...

you are forced to use a closed-source **SDK** in your product.

you are forced to use a proprietary interface to communicate.

you are forced to use a proprietary communication protocol.

you are forced to use a vendor-specific data model.

you are forced to run your solution in a specific software platform.

you are forced to run your solution on specific hardware.

The Key to Reducing Costs: Interoperability

We need...

- 1. A common **Interface** (Analogy: A Book)
- 2. A common **Data Format** (Analogy: Latin Alphabet)
- 3. A common **Data Model** (Analogy: English)
- 4. Common **Semantics** (Analogy: "Moby Dick")

Only when all 4 things are present can we truly understand each other!

An Interoperability Example for OPC UA-enabled Assets

- 1. Interface: OPC UA Client/Server
- 2. Data Format: OPC UA Binary
- 3. Data Model: OPC UA Information Model
- 4. Semantics: OPC UA Robotics Companion Spec

An Interoperability Example for non-OPC UA-enabled Assets

1. Interface: Modbus (later mapped to OPC UA)

2. Data Format: JSON-LD

3. Data Model: Web of Things Thing Description

4. Semantics: Modbus Protocol Binding

IEC 62541 - The Industrial Interoperability Standard
Microsoft is a member of the OPC Foundation since 1996, >900 members
Microsoft supports OPC UA on Azure since 2016
Microsoft has contributed over 5M lines of open-source code to the OPC Foundation

Interoperability

Vendor, Protocol, Platform and OS Independent

Scalable from sensor to Cloud, Services Oriented Architecture (SOA)

Owned by a Non-Profit (OPC Foundation)

>100M installed base and exponential growth

Data Modelling

Discoverable, supports complex data types

Graph support, preserves source context

Vendor extendable

CERTIFIED

OPC

Domain-specific Companion Specifications:

- Discrete: Robotics, Machine Vision, ...
- Process: FDI, FDT, PA-DIM, MDIS, NOA..
- Energy: IEC61850, ...

Security

Secure Design from group-up

Based on open security standards

Auditing, Authentication & Encryption

Evolves as security technologies evolve

Vendors can choose level of security

Acceptable by IT departments

Semantic Interoperability via Companion Specs

The VDMA has over 3200 member companies, over 600 are involved in building OPC UA Companion Specs

- » Agricultural Machinery
- » Air Conditioning & Ventilation
- » Air Pollution Control
- » Automated Guided Vehicles
- » Battery Production
- » Building Control and Management
- » Building Materials
- » Ceramic Machinery
- » Cleaning Systems
- » Compressors, Compressed Air and Vacuum Technology
- » Construction Equipment
- » Continuous Conveyors
- » Cranes
- » Die & Mould
- » Drying Technology
- » Electrical Automation
- » Electronics, Micro & Nano Technologies

- » Engines
- » Engines & Systems
- » Fire Fighting Equipment
- » Fluid Power
- » Food Processing and Packaging Machinery
- » Foundry Machinery
- » Glass Machinery
- » Hydro Power Plants
- » Industrial Trucks
- » Integrated Assembly Solutions
- » Intralogistic Systems
- » Length Measurement Technology
- » Lifts & Escalators
- » Machine Tools and Manufacturing Systems
- » Machine Vision
- » Metallurgical Plants and Rolling Mills

- » Micro Technologies
- » Mining
- » Photovoltaic Equipment
- » Plastics & Rubber Machinery
- » Power Transmission Engineering
- » Precision Tools
- » Printing & Paper Technology
- » Process Plant & Equipment
- » Productronic
- » Pumps & Systems
- » Refrigeration & Heat Pump Technology
- » Robotics
- » Security Systems
- » Software & Digitalization
- » Surface Technology
- » Testing Technology
- » Textile Care, Fabric and Leather Technology

- » Textile Machinery
- » Thermal Power Plants
- » Thermo Process Technology
- » Valves
- » Waste Treatment & Recycling
- » Weighing Technology
- » Welding & Pressure Gas Equipment
- » Wind Power Plants
- » Woodworking Machinery

OPC UA CS Released

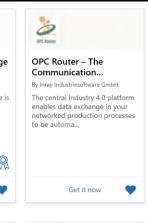
OPC UA CS Release Candidate

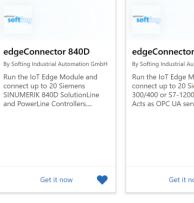
Joint Working Group with OPC Foundation

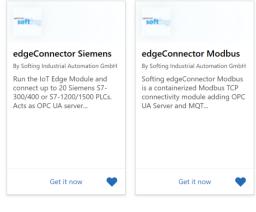
OPC UA CS in Progress

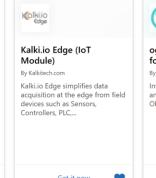
OPC UA CS in Planning

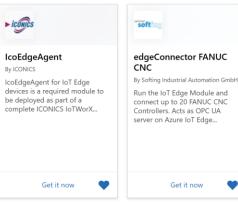
Industrial Connectivity


Industrial IoT Edge Partnerships




Normalized, standardized, open data model & telemetry stream for all machines, including security!





All products – Microsoft Azure Marketplace

Industrial Asset Data Model Kinds and how to Map to OPC UA (Estimated WW Numbers!)

- 1. Discoverable (~10%)
 - a) OPC UA-enabled (PLC) (~4%)
 - b) Non-OPC UA-enabled (PLC) (~6%)
- - -> Automatic mapping by ind. conn. software

-> No ind. conn. software required!

- 2. Non-Discoverable (~90%)
 - a) Fixed function/data model (~63%)
 - b) Programmable (PLC) (~27%)

- -> Automatic mapping based on WoT Thing Description sent to ind. conn. software
- -> Manual mapping via ind. conn. software

Web of Things Thing Description

Standardized machine and human readable device descriptions

```
"@context": "https://www.w3.org/2019/wot/td/v1",
         "id": "urn:siemens:pac4200",
         "base": "modbus://192.168.10.100:1502",
         "title": "Siemens SENTRON PAC4200",
         "description": "Multifunctional energy metering device",
         "properties": {
             "Voltagel1-N": {
                 "@type": "opcua_30141:AcVoltagePe_UL1N",
                 "type": "number", "readOnly": true,
10
                 "forms": [{
                     "href": "/1?offset=3&length=4","op": ["readproperty","observeproperty"]
                 }]
             "VoltageL2-N": {
         "actions": {
             "changeRate": {
                 "@type": "opcua_30141:metering_rate",
                 "input": {
                     "type": "number", "enum": [0,1],
38
                     "description": "0 for high rate, 1 for low rate"
                 "forms": [{
                     "href": "/1?offset=60006&length=1","op": "invokeaction"
                 }]
44
```

Web of Things (WoT) Thing Description

W3C

W3C Recommendation 9 April 2020 (Link errors corrected 23 June 2020)

This version:

https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

Latest published version:

https://www.w3.org/TR/wot-thing-description/

Latest editor's draft:

https://w3c.github.io/wot-thing-description/

Implementation report:

https://w3c.github.io/wot-thing-description/testing/report.html

Previous versio

https://www.w3.org/TR/2020/PR-wot-thing-description-20200130/

Editors:

Sebastian Kaebisch (Siemens AG)

Takuki Kamiya (Fujitsu Laboratories of America)

Michael McCool (Intel)

Victor Charpenay (Siemens AG)

Matthias Kovatsch (Huawei)

Participate:

GitHub w3c/wot-thing-description

<u>File a bug</u>

Commit history

Pull requests

Contributors:

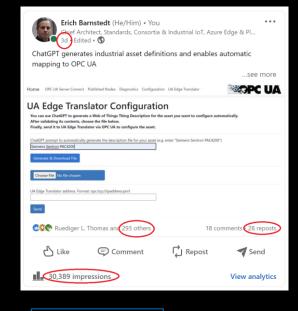
In the GitHub repository

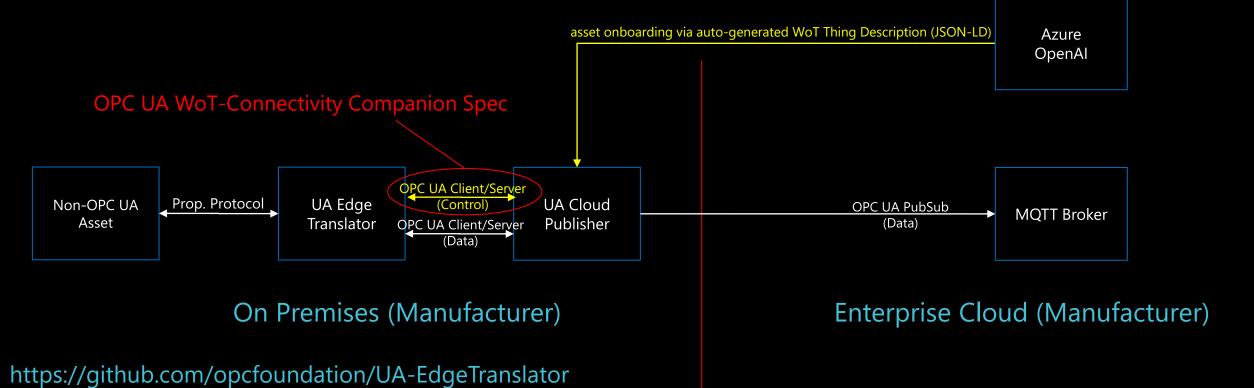
Repository:

We are on GitHub

File a bug

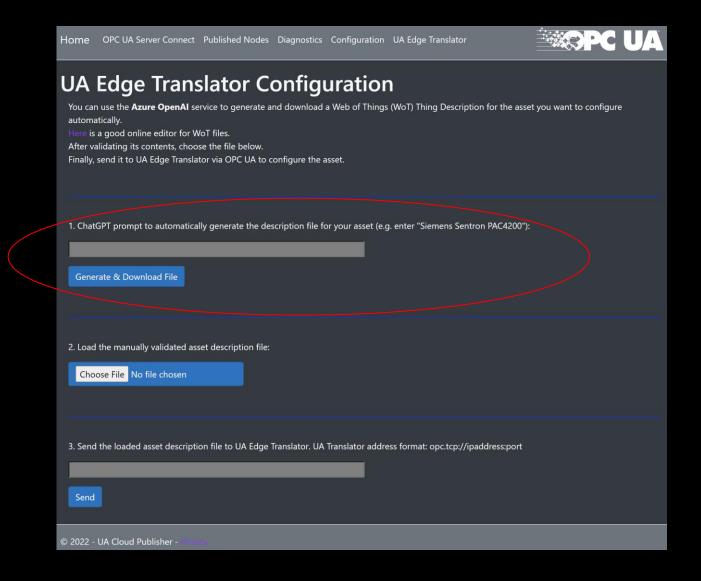
Please check the <u>errata</u> for any errors or issues reported since publication.


See also translations


Copyright © 2017-2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.

Abstract

UA Edge Translator Standardized Industrial Connectivity Integration & OpenAl-Powered Automatic Asset Onboarding in 3 Steps!

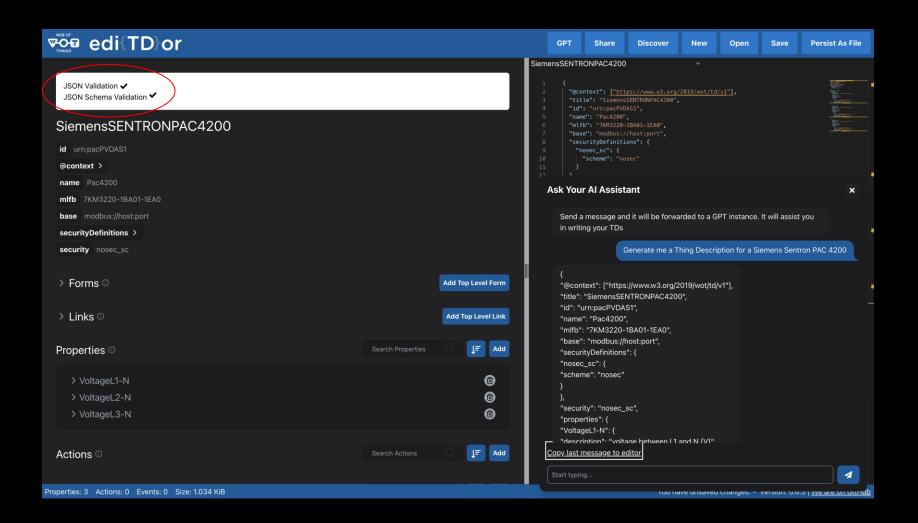

OPC 10100-1

OPC UA for WOT Connectivity Part 1: API Definition

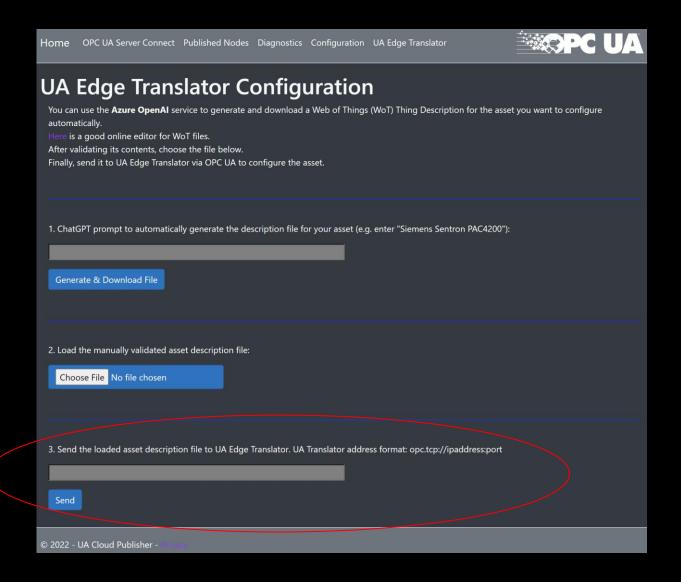
Release Candidate 1.00

2023-09-28

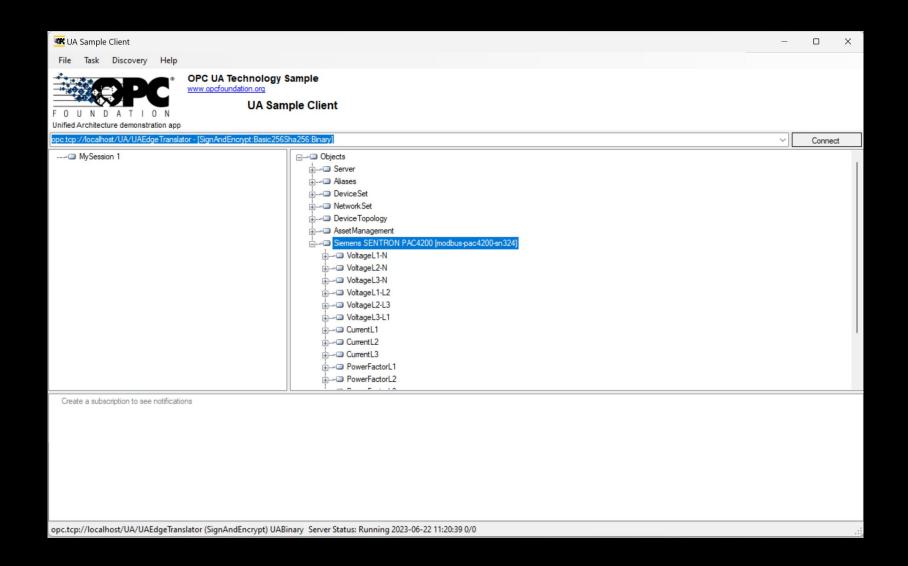
1. User enters make and model of asset in Chat prompt



Asset Copilot - Azure OpenAl auto-generated WoT TD File Including support for OPC UA Companion Specifications




```
pac4200.jsonId 💠 >
Schema: https://json.schemastore.org/jsonld.json
     1 ♀ = {
              "@context": [
                "https://www.w3.org/2019/wot/td/v1",
                "https://si-ra.github.io/ontologies/td-context.jsonld".
                "http://opcfoundation.org/UA/PNEM/"
              "id": "urn:pac4200",
              "securityDefinitions": {
                "nosec_sc": {
                  "scheme": "nosec"
    11
    12
              "security": [
    13
                "nosec sc"
    14
    15
    16
              "@type": [
                "Thing"
    17
    18
              "name": "modbus-pac4200-sn324".
    19
              "base": "modbus://192.168.10.100:502",
    20
              "title": "Siemens SENTRON PAC4200".
    21
              "properties": {
                "VoltageL1-N": {
    23
                  "type": "number",
    24
                  "readOnly": true,
    25
                  "observable": true.
    26
                  "forms": [
    27
    28
    29
                      "href": "/1?address=1&quantity=2",
    30
    31
                        "readproperty",
                        "observeproperty"
    32
    33
                     "opcua:type": "nsu=http://opcfoundation.org/UA/PNEM/;i=6098",
    34
                      "modbus:type": "float",
    35
                      "modbus:entity": "holdingregister",
    36
                      "modbus:pollingTime": 2000
    37
    38
    39
    40
                "VoltageL2-N": {
    41
                  "type": "number"
```


2. User edits auto-generated WoT Thing Description

3. User sends edited WoT Thing Description to UA Edge Translator

UA Edge Translator Automatically Maps the Modbus I/F to OPC UA

Conclusion

Standardized Interfaces and Data Models is a requirement for

1. Cost Reduction

2. Automation

3. ... and Generative Al!